Abstract
Demonstration selection algorithms play a crucial role in optimizing Large Language Models' (LLMs) in-context learning performance. Despite numerous proposed algorithms, their comparative effectiveness remains understudied. We present a comprehensive evaluation of six state-of-the-art demonstration selection algorithms across five datasets, examining both their effectiveness and computational efficiency. Our findings reveal significant trade-offs: while some demonstration selection algorithms achieve superior accuracy, they incur substantial computational costs. We also discover that increasing demonstration examples doesn't consistently improve performance, and some sophisticated algorithms struggle to outperform random selection in certain scenarios. These insights provide valuable benchmarks for future algorithm development and practical implementation. Our code is available at https://github.com/Tizzzzy/Demonstration Selection Overview.
Original language | English (US) |
---|---|
Title of host publication | Special Track on AI Alignment |
Editors | Toby Walsh, Julie Shah, Zico Kolter |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 29490-29492 |
Number of pages | 3 |
Edition | 28 |
ISBN (Electronic) | 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978 |
DOIs | |
State | Published - Apr 11 2025 |
Event | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: Feb 25 2025 → Mar 4 2025 |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Number | 28 |
Volume | 39 |
ISSN (Print) | 2159-5399 |
ISSN (Electronic) | 2374-3468 |
Conference
Conference | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 2/25/25 → 3/4/25 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence