Comparative study of light-emitting porous silicon anodized with light assistance and in the dark

Leonid Tsybeskov, C. Peng, S. P. Duttagupta, E. Ettedgui, Y. Gao, P. M. Fauchet, G. E. Carver

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

In this study, we compare two different types of light emitting porous silicon (LEpSi) samples: LEpSi anodized in the dark (DA) and LEpSi anodized with light assistance (LA). On the basis of photoluminescence (PL), Raman, FTIR, SEM, spatially resolved reflectance (SRR) and spatially resolved photoluminescence (SRPL) studies, we demonstrate that the luminescence in LA porous silicon is strong, easily tunable, very stable and originates from macropore areas. These attractive properties result from passivation by oxygen in the Si-O-Si bridging configuration that takes place during electrochemical anodization. In addition, we have been able to correlate light emission with the presence of crystalline silicon nanograins.

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposium Proceedings
EditorsM.A. Tischler, R.T. Collins, M.L.W. Thewalt, G. Abstreiter
PublisherPubl by Materials Research Society
Pages307-311
Number of pages5
ISBN (Print)1558991948
StatePublished - Dec 1 1993
Externally publishedYes
EventProceedings of the Symposium on Silicon-Based Optoelectronic Materials - San Francisco, CA, USA
Duration: Apr 12 1993Apr 14 1993

Publication series

NameMaterials Research Society Symposium Proceedings
Volume298
ISSN (Print)0272-9172

Other

OtherProceedings of the Symposium on Silicon-Based Optoelectronic Materials
CitySan Francisco, CA, USA
Period4/12/934/14/93

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Comparative study of light-emitting porous silicon anodized with light assistance and in the dark'. Together they form a unique fingerprint.

Cite this