Comparison of four boundary conditions for the fluid-hydrogel interface

Zelai Xu, Jiaqi Zhang, Yuan Nan Young, Pengtao Yue, James J. Feng

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


In adopting a poroelastic model for a hydrogel, one views its constituent fluid and solid phases as interpenetrating continua, thereby erasing the pore-scale geometry. This gives rise to the need for additional boundary conditions (BCs) at the interface between a hydrogel and a clear fluid to supplement the momentum equations for the fluid and solid phases in the hydrogel. Using a thermodynamic argument on energy dissipation, we propose three sets of BCs for the gel-fluid interface that link the normal and tangential velocity jumps across the interface to the normal and tangential stresses on either side of the interface. Using several flow problems - one-dimensional compression, two-layer Couette and Poiseuille shear flows, and deformation of a gel particle by a planar extension flow - as tests, we compare the predictions of these three BCs with that of a previously proposed BC. Some differences are stark and reveal flaws in certain BCs. Others are subtler and will require quantitative experimental data for validation. Based on these results, we recommend one set of BCs over the other three for computing the flow and deformation of hydrogels in contact with a clear fluid. In addition, we suggest benchmark experiments to validate the BCs and our recommendation.

Original languageEnglish (US)
Article number093301
JournalPhysical Review Fluids
Issue number9
StatePublished - Sep 2022

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Comparison of four boundary conditions for the fluid-hydrogel interface'. Together they form a unique fingerprint.

Cite this