Abstract
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.
Original language | English (US) |
---|---|
Article number | 7114277 |
Pages (from-to) | 2350-2363 |
Number of pages | 14 |
Journal | IEEE Transactions on Cybernetics |
Volume | 45 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2015 |
All Science Journal Classification (ASJC) codes
- Software
- Control and Systems Engineering
- Information Systems
- Human-Computer Interaction
- Computer Science Applications
- Electrical and Electronic Engineering
Keywords
- Estimation of distribution algorithm (EDA)
- historical memory
- particle swarm optimization (PSO)