TY - GEN
T1 - Composite spintronic accuracy-configurable adder for low power Digital Signal Processing
AU - Angizi, Shaahin
AU - He, Zhezhi
AU - Demara, Ronald F.
AU - Fan, Deliang
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/5/2
Y1 - 2017/5/2
N2 - Approximate Computing as a promising approach in Digital Signal Processing applications has been extensively analyzed to trade off limited accuracy loss for improvements in other circuit metrics, such as area, power, and speed. Most previous works on approximate circuit design have hardwired the degree of approximation in their implementations. This significantly limits their applicability, since inherent resilience varies significantly within applications. To address this limitation, in this paper, we propose a compact and energy efficient accuracy-configurable adder design based on a composite spintronic device structure consisting of magnetic domain wall motion stripe and magnetic tunnel junction. By leveraging the intrinsic current-mode thresholding operation of the spintronic device, we initially propose a hybrid Spin-CMOS majority gate and then we employ it to design an accuracy-configurable full adder cell. The proposed adder is equipped with a control knob to regulate energy-efficiency and the output quality trade-offs by modulating the circuit into two distinct operation modes (approximation and precision) to obtain acceptable output quality and reduced power consumption. The device-circuit SPICE simulations show 34.58% and 66% improvement in power consumption for precision and approximation modes, respectively, over recently reported Domain Wall Motion-based full adder design. The area-efficient accuracy-configurable adder also exhibits 19% improvement in circuit complexity over state-of-the-art CMOS FA design. We demonstrate the efficacy of our proposed adder in discrete cosine transform computation for a digital image processing architecture.
AB - Approximate Computing as a promising approach in Digital Signal Processing applications has been extensively analyzed to trade off limited accuracy loss for improvements in other circuit metrics, such as area, power, and speed. Most previous works on approximate circuit design have hardwired the degree of approximation in their implementations. This significantly limits their applicability, since inherent resilience varies significantly within applications. To address this limitation, in this paper, we propose a compact and energy efficient accuracy-configurable adder design based on a composite spintronic device structure consisting of magnetic domain wall motion stripe and magnetic tunnel junction. By leveraging the intrinsic current-mode thresholding operation of the spintronic device, we initially propose a hybrid Spin-CMOS majority gate and then we employ it to design an accuracy-configurable full adder cell. The proposed adder is equipped with a control knob to regulate energy-efficiency and the output quality trade-offs by modulating the circuit into two distinct operation modes (approximation and precision) to obtain acceptable output quality and reduced power consumption. The device-circuit SPICE simulations show 34.58% and 66% improvement in power consumption for precision and approximation modes, respectively, over recently reported Domain Wall Motion-based full adder design. The area-efficient accuracy-configurable adder also exhibits 19% improvement in circuit complexity over state-of-the-art CMOS FA design. We demonstrate the efficacy of our proposed adder in discrete cosine transform computation for a digital image processing architecture.
UR - http://www.scopus.com/inward/record.url?scp=85019541234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019541234&partnerID=8YFLogxK
U2 - 10.1109/ISQED.2017.7918347
DO - 10.1109/ISQED.2017.7918347
M3 - Conference contribution
AN - SCOPUS:85019541234
T3 - Proceedings - International Symposium on Quality Electronic Design, ISQED
SP - 391
EP - 396
BT - Proceedings of the 18th International Symposium on Quality Electronic Design, ISQED 2017
PB - IEEE Computer Society
T2 - 18th International Symposium on Quality Electronic Design, ISQED 2017
Y2 - 14 March 2017 through 15 March 2017
ER -