Abstract
Computer vision-based path planning can play a crucial role in numerous technologically driven smart applications. Although various path planning methods have been proposed, limitations, such as unreliable three-dimensional (3D) localization of objects in a workspace, time-consuming computational processes, and limited two-dimensional workspaces, remain. Studies to address these problems have achieved some success, but many of these problems persist. Therefore, in this study, which is an extension of our previous paper, a novel path planning approach that combined computer vision, Q-learning, and neural networks was developed to overcome these limitations. The proposed computer vision-neural network algorithm was fed by two images from two views to obtain accurate spatial coordinates of objects in real time. Next, Q-learning was used to determine a sequence of simple actions: up, down, left, right, backward, and forward, from the start point to the target point in a 3D workspace. Finally, a trained neural network was used to determine a sequence of joint angles according to the identified actions. Simulation and experimental test results revealed that the proposed combination of 3D object detection, an agent-environment interaction in the Q-learning phase, and simple joint angle computation by trained neural networks considerably alleviated the limitations of previous studies.
Original language | English (US) |
---|---|
Article number | 1697 |
Journal | Sensors |
Volume | 22 |
Issue number | 5 |
DOIs | |
State | Published - Mar 1 2022 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering
Keywords
- Computer vision
- Neural network
- Obstacle avoidance
- Path planning
- Q-learning
- Robot arm
- Target reaching
- YOLO algorithm