Abstract
Quantiles, which are also known as values-at-risk in finance, frequently arise in practice as measures of risk. This article develops asymptotically valid confidence intervals for quantiles estimated via simulation using variance-reduction techniques (VRTs). We establish our results within a general framework for VRTs, which we show includes importance sampling, stratified sampling, antithetic variates, and control variates. Our method for verifying asymptotic validity is to first demonstrate that a quantile estimator obtained via a VRT within our framework satisfies a Bahadur-Ghosh representation. We then exploit this to show that the quantile estimator obeys a central limit theorem (CLT) and to develop a consistent estimator for the variance constant appearing in the CLT, which enables us to construct a confidence interval. We provide explicit formulae for the estimators for each of the VRTs considered.
Original language | English (US) |
---|---|
Article number | 10 |
Journal | ACM Transactions on Modeling and Computer Simulation |
Volume | 22 |
Issue number | 2 |
DOIs | |
State | Published - Mar 2012 |
All Science Journal Classification (ASJC) codes
- Modeling and Simulation
- Computer Science Applications
Keywords
- Performance
- Theory