TY - GEN
T1 - Consolidation of reactive nanocomposite powders
AU - Stamatis, Demitrios
AU - Zhu, Xiaoying
AU - Ermoline, Alexandre
AU - Schoenitz, Mirko
AU - Dreizin, Edward L.
AU - Redner, Paul
PY - 2009
Y1 - 2009
N2 - There is interest in replacing energetically inert structural components with reactive structures capable of highly exothermic reactions. Consolidated reactive materials are also desired for other applications, including reactive fragments, high density additives to explosives, insensitive pyrotechnic components, etc. Unlike nano-energetic compositions based on mixed nanopowders, reactive nanocomposite powders prepared by Arrested Reactive Milling (ARM) can be readily consolidated to achieve combined characteristics of high reactivity, low porosity, and structural strength. Different consolidation methods can be applied, and as a first step, a simple uniaxial pressing of nanocomposite powders is used in this project. A set of reactive nanocomposite powders with several Al-based thermite compositions prepared by ARM was used to prepare pellet-like consolidated samples. For various mechanical tests, both cylindrical and rectangular pellets were prepared with varied dimensions and varied degrees of compaction. Pellet compaction densities exceeding 90% of theoretical maximum density, were achieved. Despite the presence of Al and oxidizers, including MoO3, CuO, Bi2O3 and others, mixed on the nanoscale in different samples, no reaction was observed to be triggered by the powder compaction at pressures reaching 500 MPa. An experimental technique has been developed to study the thermal ignition initiation of the consolidated samples as a function of their physical and mechanical properties. The experimental technique will be used to develop a theoretical model to describe the ignition behavior of the consolidated materials.
AB - There is interest in replacing energetically inert structural components with reactive structures capable of highly exothermic reactions. Consolidated reactive materials are also desired for other applications, including reactive fragments, high density additives to explosives, insensitive pyrotechnic components, etc. Unlike nano-energetic compositions based on mixed nanopowders, reactive nanocomposite powders prepared by Arrested Reactive Milling (ARM) can be readily consolidated to achieve combined characteristics of high reactivity, low porosity, and structural strength. Different consolidation methods can be applied, and as a first step, a simple uniaxial pressing of nanocomposite powders is used in this project. A set of reactive nanocomposite powders with several Al-based thermite compositions prepared by ARM was used to prepare pellet-like consolidated samples. For various mechanical tests, both cylindrical and rectangular pellets were prepared with varied dimensions and varied degrees of compaction. Pellet compaction densities exceeding 90% of theoretical maximum density, were achieved. Despite the presence of Al and oxidizers, including MoO3, CuO, Bi2O3 and others, mixed on the nanoscale in different samples, no reaction was observed to be triggered by the powder compaction at pressures reaching 500 MPa. An experimental technique has been developed to study the thermal ignition initiation of the consolidated samples as a function of their physical and mechanical properties. The experimental technique will be used to develop a theoretical model to describe the ignition behavior of the consolidated materials.
UR - http://www.scopus.com/inward/record.url?scp=77957841896&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957841896&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77957841896
SN - 9781563479762
T3 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
BT - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
T2 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Y2 - 2 August 2009 through 5 August 2009
ER -