Abstract
The storage of frequently requested multimedia content at small-cell base stations (BSs) can reduce the load of macro-BSs without relying on high-speed backhaul links. In this work, the optimal operation of a system consisting of a cache-aided small-cell BS and a macro-BS is investigated for both offline and online caching settings. In particular, a binary fading one-sided interference channel is considered in which the small-cell BS, whose transmission is interfered by the macro-BS, has a limited-capacity cache. The delivery time per bit (DTB) is adopted as a measure of the coding latency, that is, the duration of the transmission block, required for reliable delivery. For offline caching, assuming a static set of popular contents, the minimum achievable DTB is characterized through information-theoretic achievability and converse arguments as a function of the cache capacity and of the capacity of the backhaul link connecting cloud and small-cell BS. For online caching, under a time-varying set of popular contents, the long-term (average) DTB is evaluated for both proactive and reactive caching policies. Furthermore, a converse argument is developed to characterize the minimum achievable long-term DTB for online caching in terms of the minimum achievable DTB for offline caching. The performance of both online and offline caching is finally compared using numerical results.
| Original language | English (US) |
|---|---|
| Article number | 366 |
| Journal | Entropy |
| Volume | 19 |
| Issue number | 7 |
| DOIs | |
| State | Published - Jul 18 2017 |
All Science Journal Classification (ASJC) codes
- Information Systems
- Mathematical Physics
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Electrical and Electronic Engineering
Keywords
- Cloud RAN
- Edge caching
- Information theory
- Interference channel
- Latency