Abstract
Using porous hollow fiber membranes, this study illustrates a novel technique to continuously synthesize polymer-coated drug crystals by antisolvent crystallization. The synthesized polymer-coated drug crystals involve crystals of the drug Griseofulvin (GF) coated by a thin layer of the polymer Eudragit RL100. The process feed, an acetone solution of the drug GF containing the dissolved polymer, was passed through the shell side of a membrane module containing many porous hollow fibers of Nylon-6. Through the lumen of the hollow fibers, the antisolvent water was passed at a higher pressure to inject water jets through every pore in the fiber wall into the shell-side acetone feed solution, creating an extremely high level of supersaturation and immediate crystallization. It appears that the GF crystals are formed first and serve as nuclei for the precipitation of the polymer Eudragit, which forms a thin coating around the GF crystals. The polymer-coated drug crystals were collected by a filtration device at the shell-side outlet of the membrane module, and the surface morphology, particle size distribution, and the polymer coating thickness were then characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), laser diffraction spectroscopy (LDS), and thermogravimetric analysis (TGA). To study the properties of the coated drug crystals, X-ray diffraction (XRD), Raman spectroscopy, and dissolution tests were implemented. These results indicate that a polymer-coated, free-flowing product was successfully developed under appropriate conditions in this novel porous hollow fiber antisolvent crystallization (PHFAC) method. The coated drug particles can be potentially used for controlled release. The molecular and the crystal structures of GF were not affected by the PHFAC method, which may be easily scaled up.
Original language | English (US) |
---|---|
Pages (from-to) | 432-441 |
Number of pages | 10 |
Journal | Langmuir |
Volume | 31 |
Issue number | 1 |
DOIs | |
State | Published - Jan 13 2015 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry