@inproceedings{9609d7abc22543759fa78fb0cfa7f8e0,
title = "Control of a Mixed Autonomy Signalised Urban Intersection: An Action-Delayed Reinforcement Learning Approach",
abstract = "We consider a mixed autonomy scenario where the traffic intersection controller decides whether the traffic light will be green or red at each lane for multiple traffic-light blocks. The objective of the traffic intersection controller is to minimize the queue length at each lane and maximize the outflow of vehicles over each block. We consider that the traffic intersection controller informs the autonomous vehicle (AV) whether the traffic light will be green or red for the future traffic-light block. Thus, the AV can adapt its dynamics by solving an optimal control problem. We model the decision process of the traffic intersection controller as a deterministic delayed Markov decision process owing to the delayed action by the traffic controller. We propose Reinforcement Learning based model-free algorithm to obtain the optimal policy. We show - by extensive simulations - that our algorithm converges and drastically reduces the energy costs of AVs as the traffic controller communicates with the AVs.",
author = "Erica Salvato and Arnob Ghosh and Gianfranco Fenu and Thomas Parisini",
note = "Publisher Copyright: {\textcopyright} 2021 IEEE.; 2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021 ; Conference date: 19-09-2021 Through 22-09-2021",
year = "2021",
month = sep,
day = "19",
doi = "10.1109/ITSC48978.2021.9564983",
language = "English (US)",
series = "IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2042--2047",
booktitle = "2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021",
address = "United States",
}