Controller design and optimal tuning of a wafer handling robot

Xiaowen Yu, Cong Wang, Yu Zhao, Masayoshi Tomizuka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Frog-leg robots have been widely used for handling silicon wafers inside the vacuum environment of semiconductor manufacturing machines. In order to enhance stiffness, frog-leg robots adopt a parallel structure. A main challenge of controlling wafer handling robot is avoiding vibration, which is the major cause of wafer sliding and particle contamination. This paper presents two control approaches to improve the performance of frog-leg robots. First, in addition to the basic tri-loop PID feedback controller, torque offset is injected to the input of the robot to compensate the robot's nonlinear dynamics. This reduces the following error and major vibration. The torque offset is calculated based on identified robot dynamics. Second, a test based optimization method is developed to tune the gains of the feedback controller. Wafer vibration is measured and analyzed to score the system performance. Comparison results show that the proposed control scheme gives much improved performance.

Original languageEnglish (US)
Title of host publication2015 IEEE Conference on Automation Science and Engineering
Subtitle of host publicationAutomation for a Sustainable Future, CASE 2015
PublisherIEEE Computer Society
Pages640-646
Number of pages7
ISBN (Electronic)9781467381833
DOIs
StatePublished - Oct 7 2015
Externally publishedYes
Event11th IEEE International Conference on Automation Science and Engineering, CASE 2015 - Gothenburg, Sweden
Duration: Aug 24 2015Aug 28 2015

Publication series

NameIEEE International Conference on Automation Science and Engineering
Volume2015-October
ISSN (Print)2161-8070
ISSN (Electronic)2161-8089

Other

Other11th IEEE International Conference on Automation Science and Engineering, CASE 2015
CountrySweden
CityGothenburg
Period8/24/158/28/15

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Controller design and optimal tuning of a wafer handling robot'. Together they form a unique fingerprint.

Cite this