Abstract
The authors report on the achievement of full-color nanowire light-emitting diodes (LEDs), with the incorporation of InGaN/AlGaN nanowire heterostructures grown directly on the Si (111) substrates by molecular beam epitaxy. Multiple color emission across nearly the entire visible wavelength range can be realized by varying the In composition in the InGaN quantum dot active region. Moreover, multiple AlGaN shell layers are spontaneously formed during the growth of InGaN/AlGaN quantum dots, leading to the drastically reduced nonradiative surface recombination, and enhanced carrier injection efficiency. Such core-shell nanowire structures exhibit significantly increased carrier lifetime and massively enhanced photoluminescence intensity compared to conventional InGaN/GaN nanowire LEDs. A high color rendering index of ∼98 was recorded for white-light emitted from such phosphor-free core-shell nanowire LEDs.
Original language | English (US) |
---|---|
Article number | 02B108 |
Journal | Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics |
Volume | 35 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1 2017 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry