Abstract
Functional grading of rubber-like materials is suggested as a means of controlling their mechanical response within the context of finite thermoelasticity. To illustrate the concept of functional grading, we consider the axial shearing deformation of a radially heated, isotropic, incompressible, hollow rubber tube. The temperature stiffening, the strain stiffening, and the radially varying shear modulus of rubber tubes are modeled here by generalizing the Neo-Hookean and the Gent models. Local energy and momentum balance equations are solved to obtain the temperature and stress-strain fields in the sheared tube. The shear strain becomes highly inhomogeneous with an increase in temperature gradient, whereas functional grading of the tube can perfectly homogenize the strain. This paper indicates the potential of functionally grading rubbers to control their mechanical response in thermally hostile environments.
Original language | English (US) |
---|---|
Pages (from-to) | 257-266 |
Number of pages | 10 |
Journal | Mechanics Research Communications |
Volume | 30 |
Issue number | 3 |
DOIs | |
State | Published - 2003 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
Keywords
- Axial shearing
- Finite thermoelasticity
- Functional grading
- Material optimization
- Rubber tube