TY - GEN
T1 - Cooperative actuator fault accommodation of formation flying vehicles with absolute measurements
AU - Azizi, Seyyedmohsen M.
AU - Khorasani, Khashayar
PY - 2010
Y1 - 2010
N2 - In this paper, a new cooperative fault accommodation algorithm is proposed for multiple-vehicle formation flying missions embedded with absolute measurements. This framework provides two recovery modules, namely a low-level fault recovery (LLFR) module and a formation-level fault recovery (FLFR) module. The framework also includes a high-level (HL) supervisor. In the LLFR module, a conventional recovery controller (RC) based on a given fault severity estimate is employed. In case that the LLFR controller cannot fully recover the faulty vehicle due to an imprecise fault estimate, the error bounds imposed by the mission specifications can be violated and the supervisor identifies this violation and activates the FLFR module. This module is responsible for reconfiguring the weighted absolute measurement formation (WAMF) digraph, applying a robust controller, and imposing constraints on the desired input vectors of the partially LL-recovered vehicle and its neighbor vehicles. Consequently, the formation mission specifications can still be guaranteed so that the fault is cooperatively recovered by our proposed scheme. Simulation results for a satellite formation in planetary orbital environment (POE) confirm the validity and effectiveness of our analytical work.
AB - In this paper, a new cooperative fault accommodation algorithm is proposed for multiple-vehicle formation flying missions embedded with absolute measurements. This framework provides two recovery modules, namely a low-level fault recovery (LLFR) module and a formation-level fault recovery (FLFR) module. The framework also includes a high-level (HL) supervisor. In the LLFR module, a conventional recovery controller (RC) based on a given fault severity estimate is employed. In case that the LLFR controller cannot fully recover the faulty vehicle due to an imprecise fault estimate, the error bounds imposed by the mission specifications can be violated and the supervisor identifies this violation and activates the FLFR module. This module is responsible for reconfiguring the weighted absolute measurement formation (WAMF) digraph, applying a robust controller, and imposing constraints on the desired input vectors of the partially LL-recovered vehicle and its neighbor vehicles. Consequently, the formation mission specifications can still be guaranteed so that the fault is cooperatively recovered by our proposed scheme. Simulation results for a satellite formation in planetary orbital environment (POE) confirm the validity and effectiveness of our analytical work.
UR - http://www.scopus.com/inward/record.url?scp=79953134951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953134951&partnerID=8YFLogxK
U2 - 10.1109/CDC.2010.5717111
DO - 10.1109/CDC.2010.5717111
M3 - Conference contribution
AN - SCOPUS:79953134951
SN - 9781424477456
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 6299
EP - 6304
BT - 2010 49th IEEE Conference on Decision and Control, CDC 2010
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 49th IEEE Conference on Decision and Control, CDC 2010
Y2 - 15 December 2010 through 17 December 2010
ER -