TY - GEN
T1 - Coupling of hydrodynamics, vaporization and reaction with liquid spray injection into a high-temperature gas-solid reactor
AU - Wang, Dawei
AU - Patel, Rajesh
AU - Zhu, Chao
AU - Ho, Teh C.
PY - 2011
Y1 - 2011
N2 - A mechanistic model that to provide a quantitative understanding of the interplay of hydrodynamics, heat/mass transfer, and cracking reactions in the feed injection zone of a fluid catalytic cracking (FCC) riser reactor with a single nozzle spray. With the injection of an oil spray into a gas-solid flow, the collision between cold oil droplets and hot catalyst particles results in a strong momentum transfer that affects the spray hydrodynamics in terms of penetration and scattering. It also causes a significant heat transfer giving rise to rapid droplet vaporization and the attendant cooling of the catalyst. The presence of cracking reactions introduces volume expansion, changes in gas composition and volume fraction, and a cooling effect due to endothermicity. Accordingly, we in this study present an analysis of chemically-induced "entrance effects" in an FCC riser with a single nozzle spray. The cracking reaction network is described by a four-lump reaction model, while the ambient gas-solid transport is represented by a dense-phase riser flow. A Lagrangian modeling approach is adopted to track the spray trajectory as cracking reactions proceed. It is shown that cracking reactions play an important role in dictating the spray behavior, reaction and heat/mass transfer characteristics in the feed injection zone of an FCC riser.
AB - A mechanistic model that to provide a quantitative understanding of the interplay of hydrodynamics, heat/mass transfer, and cracking reactions in the feed injection zone of a fluid catalytic cracking (FCC) riser reactor with a single nozzle spray. With the injection of an oil spray into a gas-solid flow, the collision between cold oil droplets and hot catalyst particles results in a strong momentum transfer that affects the spray hydrodynamics in terms of penetration and scattering. It also causes a significant heat transfer giving rise to rapid droplet vaporization and the attendant cooling of the catalyst. The presence of cracking reactions introduces volume expansion, changes in gas composition and volume fraction, and a cooling effect due to endothermicity. Accordingly, we in this study present an analysis of chemically-induced "entrance effects" in an FCC riser with a single nozzle spray. The cracking reaction network is described by a four-lump reaction model, while the ambient gas-solid transport is represented by a dense-phase riser flow. A Lagrangian modeling approach is adopted to track the spray trajectory as cracking reactions proceed. It is shown that cracking reactions play an important role in dictating the spray behavior, reaction and heat/mass transfer characteristics in the feed injection zone of an FCC riser.
UR - http://www.scopus.com/inward/record.url?scp=85088184458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088184458&partnerID=8YFLogxK
U2 - 10.1115/ajtec2011-44158
DO - 10.1115/ajtec2011-44158
M3 - Conference contribution
AN - SCOPUS:85088184458
SN - 9780791838921
T3 - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
BT - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
PB - American Society of Mechanical Engineers
T2 - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
Y2 - 13 March 2011 through 17 March 2011
ER -