TY - JOUR
T1 - Crystal structure and electronic properties of bulk and thin film brownmillerite oxides
AU - Young, Joshua
AU - Rondinelli, James M.
N1 - Publisher Copyright:
©2015 American Physical Society.
PY - 2015/11/17
Y1 - 2015/11/17
N2 - The equilibrium structure and functional properties exhibited by brownmillerite oxides, a family of perovskite-derived structures with alternating layers of BO6 octahedra and BO4 tetrahedra, viz., ordered arrangements of oxygen vacancies, is dependent on a variety of competing crystal-chemistry factors. We use electronic structure calculations to disentangle the complex interactions in two ferrates, Sr2Fe2O5 and Ca2Fe2O5, relating the stability of the equilibrium (strain-free) and thin film structures to both previously identified and herein newly proposed descriptors. We show that cation size and intralayer separation of the tetrahedral chains provide key contributions to the preferred ground state. We show the bulk ground-state structure is retained in the ferrates over a range of strain values; however, a change in the orientation of the tetrahedral chains, i.e., a perpendicular orientation of the vacancies relative to the substrate, is stabilized in the compressive region. The structure stability under strain is largely governed by maximizing the intraplane separation of the dipoles generated from rotations of the FeO4 tetrahedra. Lastly, we find that the electronic band gap is strongly influenced by strain, manifesting as an unanticipated asymmetric-vacancy alignment dependent response. This atomistic understanding establishes a practical route for the design of functional electronic materials in thin film geometries.
AB - The equilibrium structure and functional properties exhibited by brownmillerite oxides, a family of perovskite-derived structures with alternating layers of BO6 octahedra and BO4 tetrahedra, viz., ordered arrangements of oxygen vacancies, is dependent on a variety of competing crystal-chemistry factors. We use electronic structure calculations to disentangle the complex interactions in two ferrates, Sr2Fe2O5 and Ca2Fe2O5, relating the stability of the equilibrium (strain-free) and thin film structures to both previously identified and herein newly proposed descriptors. We show that cation size and intralayer separation of the tetrahedral chains provide key contributions to the preferred ground state. We show the bulk ground-state structure is retained in the ferrates over a range of strain values; however, a change in the orientation of the tetrahedral chains, i.e., a perpendicular orientation of the vacancies relative to the substrate, is stabilized in the compressive region. The structure stability under strain is largely governed by maximizing the intraplane separation of the dipoles generated from rotations of the FeO4 tetrahedra. Lastly, we find that the electronic band gap is strongly influenced by strain, manifesting as an unanticipated asymmetric-vacancy alignment dependent response. This atomistic understanding establishes a practical route for the design of functional electronic materials in thin film geometries.
UR - http://www.scopus.com/inward/record.url?scp=84948435468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948435468&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.92.174111
DO - 10.1103/PhysRevB.92.174111
M3 - Article
AN - SCOPUS:84948435468
SN - 1098-0121
VL - 92
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 17
M1 - 174111
ER -