TY - GEN
T1 - Deep Structured Cross-Modal Anomaly Detection
AU - Li, Yuening
AU - Liu, Ninghao
AU - Li, Jundong
AU - Du, Mengnan
AU - Hu, Xia
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - Anomaly detection is a fundamental problem in data mining field with many real-world applications. A vast majority of existing anomaly detection methods predominately focused on data collected from a single source. In real-world applications, instances often have multiple types of features, such as images (ID photos, finger prints) and texts (bank transaction histories, user online social media posts), resulting in the so-called multi-modal data. In this paper, we focus on identifying anomalies whose patterns are disparate across different modalities, i.e., cross-modal anomalies. Some of the data instances within a multi-modal context are often not anomalous when they are viewed separately in each individual modality, but contains inconsistent patterns when multiple sources are jointly considered. The existence of multi-modal data in many real-world scenarios brings both opportunities and challenges to the canonical task of anomaly detection. On the one hand, in multimodal data, information of different modalities may complement each other in improving the detection performance. On the other hand, complicated distributions across different modalities call for a principled framework to characterize their inherent and complex correlations, which is often difficult to capture with conventional linear models. To this end, we propose a novel deep structured anomaly detection framework to identify the cross-modal anomalies embedded in the data. Experiments on real-world datasets demonstrate the effectiveness of the proposed framework comparing with the state-of-the-art.
AB - Anomaly detection is a fundamental problem in data mining field with many real-world applications. A vast majority of existing anomaly detection methods predominately focused on data collected from a single source. In real-world applications, instances often have multiple types of features, such as images (ID photos, finger prints) and texts (bank transaction histories, user online social media posts), resulting in the so-called multi-modal data. In this paper, we focus on identifying anomalies whose patterns are disparate across different modalities, i.e., cross-modal anomalies. Some of the data instances within a multi-modal context are often not anomalous when they are viewed separately in each individual modality, but contains inconsistent patterns when multiple sources are jointly considered. The existence of multi-modal data in many real-world scenarios brings both opportunities and challenges to the canonical task of anomaly detection. On the one hand, in multimodal data, information of different modalities may complement each other in improving the detection performance. On the other hand, complicated distributions across different modalities call for a principled framework to characterize their inherent and complex correlations, which is often difficult to capture with conventional linear models. To this end, we propose a novel deep structured anomaly detection framework to identify the cross-modal anomalies embedded in the data. Experiments on real-world datasets demonstrate the effectiveness of the proposed framework comparing with the state-of-the-art.
KW - Anomaly Detection
KW - Deep Neural Network
KW - Multi-Modal Learning
UR - http://www.scopus.com/inward/record.url?scp=85073256455&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073256455&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2019.8852136
DO - 10.1109/IJCNN.2019.8852136
M3 - Conference contribution
AN - SCOPUS:85073256455
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2019 International Joint Conference on Neural Networks, IJCNN 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 International Joint Conference on Neural Networks, IJCNN 2019
Y2 - 14 July 2019 through 19 July 2019
ER -