DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation for Network Slicing

Qiang Liu, Tao Han, Ning Zhang, Ye Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Network slicing enables multiple virtual networks run on the same physical infrastructure to support various use cases in 5G and beyond. These use cases, however, have very diverse network resource demands, e.g., communication and computation, and various performance metrics such as latency and throughput. To effectively allocate network resources to slices, we propose DeepSlicing that integrates the alternating direction method of multipliers (ADMM) and deep reinforcement learning (DRL). DeepSlicing decomposes the network slicing problem into a master problem and several slave problems. The master problem is solved based on convex optimization and the slave problem is handled by DRL method which learns the optimal resource allocation policy. The performance of the proposed algorithm is validated through network simulations.

Original languageEnglish (US)
Title of host publication2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728182988
DOIs
StatePublished - Dec 2020
Externally publishedYes
Event2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan, Province of China
Duration: Dec 7 2020Dec 11 2020

Publication series

Name2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings

Conference

Conference2020 IEEE Global Communications Conference, GLOBECOM 2020
Country/TerritoryTaiwan, Province of China
CityVirtual, Taipei
Period12/7/2012/11/20

All Science Journal Classification (ASJC) codes

  • Media Technology
  • Modeling and Simulation
  • Instrumentation
  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Software
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation for Network Slicing'. Together they form a unique fingerprint.

Cite this