TY - GEN
T1 - DeepVar
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
AU - Cheng, Chaoran
AU - Tan, Fei
AU - Wei, Zhi
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - We consider the problem of Named Entity Recognition (NER) on biomedical scientific literature, and more specifically the genomic variants recognition in this work. Significant success has been achieved for NER on canonical tasks in recent years where large data sets are generally available. However, it remains a challenging problem on many domain-specific areas, especially the domains where only small gold annotations can be obtained. In addition, genomic variant entities exhibit diverse linguistic heterogeneity, differing much from those that have been characterized in existing canonical NER tasks. The state-of-the-art machine learning approaches heavily rely on arduous feature engineering to characterize those unique patterns. In this work, we present the first successful end-to-end deep learning approach to bridge the gap between generic NER algorithms and low-resource applications through genomic variants recognition. Our proposed model can result in promising performance without any handcrafted features or post-processing rules. Our extensive experiments and results may shed light on other similar low-resource NER applications.
AB - We consider the problem of Named Entity Recognition (NER) on biomedical scientific literature, and more specifically the genomic variants recognition in this work. Significant success has been achieved for NER on canonical tasks in recent years where large data sets are generally available. However, it remains a challenging problem on many domain-specific areas, especially the domains where only small gold annotations can be obtained. In addition, genomic variant entities exhibit diverse linguistic heterogeneity, differing much from those that have been characterized in existing canonical NER tasks. The state-of-the-art machine learning approaches heavily rely on arduous feature engineering to characterize those unique patterns. In this work, we present the first successful end-to-end deep learning approach to bridge the gap between generic NER algorithms and low-resource applications through genomic variants recognition. Our proposed model can result in promising performance without any handcrafted features or post-processing rules. Our extensive experiments and results may shed light on other similar low-resource NER applications.
UR - http://www.scopus.com/inward/record.url?scp=85105980029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105980029&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105980029
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 598
EP - 605
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
Y2 - 7 February 2020 through 12 February 2020
ER -