DEGREE: DECOMPOSITION BASED EXPLANATION FOR GRAPH NEURAL NETWORKS

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu

Research output: Contribution to conferencePaperpeer-review

13 Scopus citations

Abstract

Graph Neural Networks (GNNs) are gaining extensive attention for their application in graph data. However, the black-box nature of GNNs prevents users from understanding and trusting the models, thus hampering their applicability. Whereas explaining GNNs remains a challenge, most existing methods fall into approximation based and perturbation based approaches with suffer from faithfulness problems and unnatural artifacts, respectively. To tackle these problems, we propose DEGREE (Decomposition based Explanation for GRaph nEural nEtworks) to provide a faithful explanation for GNN predictions. By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction. Based on this, we further design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods. The efficiency of our algorithm can be further improved by utilizing GNN characteristics. Finally, we conduct quantitative and qualitative experiments on synthetic and real-world datasets to demonstrate the effectiveness of DEGREE on node classification and graph classification tasks.

Original languageEnglish (US)
StatePublished - 2022
Externally publishedYes
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period4/25/224/29/22

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'DEGREE: DECOMPOSITION BASED EXPLANATION FOR GRAPH NEURAL NETWORKS'. Together they form a unique fingerprint.

Cite this