Abstract
Quantum-dot cellular automata is one of the candidate technologies used in Nano scale computer design and a promising replacement for conventional CMOS circuits in the near future. Since memory is one of the significant components of any digital system, designing a high speed and well-optimized QCA random access memory (RAM) is a remarkable subject. In this paper, a new robust five-input majority gate is first presented, which is appropriate for implementation of simple and efficient QCA circuits in single layer. By employing this structure, a novel RAM cell architecture with set and reset ability is proposed. This architecture has a simple and robust structure that helps achieving minimal area, as well as reduction in hardware requirements and clocking zone numbers. Functional correctness of the presented structures is proved by using QCADesigner tool. Simulation results confirm efficiency and usefulness of the proposed architectures vis-à-vis state-of-the-art.
Original language | English (US) |
---|---|
Pages (from-to) | 43-51 |
Number of pages | 9 |
Journal | Microelectronics Journal |
Volume | 46 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2015 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
Keywords
- Five-input majority gate
- Quantum-dotcellular automata (QCA)
- RAM cell
- Set and reset ability