Abstract
We study the structural stability of models of proteins for which the selected folds are unusually stable to mutation, that is, designable. A two-dimensional hydrophobic-polar lattice model was used to determine designable folds and these folds were investigated through Langevin dynamics. We find that the phase diagram of these proteins depends on their designability. In particular, highly designable folds are found to be weaker, i.e., easier to unfold, than low designable ones. We expect this to be related to protein flexibility.
Original language | English (US) |
---|---|
Article number | 042902 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 74 |
Issue number | 4 |
DOIs | |
State | Published - 2006 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics