Development of a test setup capable of producing hydraulic fracturing in the laboratory with image and acoustic emission monitoring

Bruno Goncalves da Silva, B. Q. Li, Z. Moradian, J. T. Germaine, H. H. Einstein

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Hydrocarbon extraction is relying progressively more on hydraulic fracturing stimulation of shale. Enhanced Geothermal Systems (EGS) also rely on hydraulic fracturing to create fractures through which water is circulated to recover heat. While hydraulic fracturing has been extensively used in field applications, the fracturing processes involved in this method are still not well understood. Since data obtained from field hydraulic stimulations may be very difficult to interpret, laboratory testing can play a major role in understanding the way fractures initiate, propagate and interact when hydraulically stimulated. This paper describes a test setup developed at MIT, which allows one to apply hydraulic pressure to flaws, or existing fractures, leading to the initiation and propagation of fractures. The test setup consists of (1) an enclosure designed and built at MIT in which water pressures up to 10 MPa can be generated, (2) a high speed camera that captures the last seconds of a test at 14,000 frames per second, (3) a high resolution camera that captures frames every 2 to 5 seconds throughout a test, and (4) an acoustic emission system that monitors the micro-seismic activity throughout the test. The setup has been successfully used in several tests on granite. An example of the type of results obtained in a test is shown.

Original languageEnglish (US)
Title of host publication49th US Rock Mechanics / Geomechanics Symposium 2015
PublisherAmerican Rock Mechanics Association (ARMA)
Pages1555-1563
Number of pages9
ISBN (Electronic)9781510810518
StatePublished - Jan 1 2015
Externally publishedYes
Event49th US Rock Mechanics / Geomechanics Symposium - San Francisco, United States
Duration: Jun 29 2015Jul 1 2015

Publication series

Name49th US Rock Mechanics / Geomechanics Symposium 2015
Volume2

Other

Other49th US Rock Mechanics / Geomechanics Symposium
Country/TerritoryUnited States
CitySan Francisco
Period6/29/157/1/15

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Development of a test setup capable of producing hydraulic fracturing in the laboratory with image and acoustic emission monitoring'. Together they form a unique fingerprint.

Cite this