TY - JOUR
T1 - Direct simulation of electrorheological suspensions
AU - Wang, Aijun
AU - Singh, Pushpendra
AU - Aubry, Nadine
PY - 2000
Y1 - 2000
N2 - A new distributed multiplier/fictitious (DLM) domain method is developed for direct simulation of electrorheological (ER) suspensions subjected to spatially uniform electrical fields. The method is implemented both in two and three dimensions. The fluid-particle system is treated implicitly using the combined weak formulation described in [1,2]. The governing Navier-Stokes equations for the fluid are solved everywhere, including the interior of the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. The electrostatic force acting on the polarized spherical particles is modeled based on the point-dipole approximation. Using our code we have studied the time evolution of particle-scale structures of ER suspensions in channels subjected to the pressure driven flow. In our study, the flow direction is perpendicular to that of the electric field. Simulations show that when the hydrodynamic force is zero, or very small compared to the electrostatic force, the particles form chains that are aligned approximately parallel to the direction of electric field. But, when the magnitude of hydrodynamic force is comparable to that of the electrostatic force the particle chains orient at an angle with the direction of the electric field. The angle between the particle chain and the direction of the electric field depends on the relative strengths of the hydrodynamic and electrostatic forces.
AB - A new distributed multiplier/fictitious (DLM) domain method is developed for direct simulation of electrorheological (ER) suspensions subjected to spatially uniform electrical fields. The method is implemented both in two and three dimensions. The fluid-particle system is treated implicitly using the combined weak formulation described in [1,2]. The governing Navier-Stokes equations for the fluid are solved everywhere, including the interior of the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. The electrostatic force acting on the polarized spherical particles is modeled based on the point-dipole approximation. Using our code we have studied the time evolution of particle-scale structures of ER suspensions in channels subjected to the pressure driven flow. In our study, the flow direction is perpendicular to that of the electric field. Simulations show that when the hydrodynamic force is zero, or very small compared to the electrostatic force, the particles form chains that are aligned approximately parallel to the direction of electric field. But, when the magnitude of hydrodynamic force is comparable to that of the electrostatic force the particle chains orient at an angle with the direction of the electric field. The angle between the particle chain and the direction of the electric field depends on the relative strengths of the hydrodynamic and electrostatic forces.
UR - http://www.scopus.com/inward/record.url?scp=0242708996&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242708996&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0242708996
SN - 0888-8116
VL - 255
SP - 179
EP - 185
JO - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
JF - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
ER -