Dispersion of the discrete arbitrarily-varying channel with limited shared randomness

Oliver Kosut, Jörg Kliewer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The second-order behavior of the discrete memoryless arbitrarily-varying channel is considered in the fixed error regime when the encoder and decoder share randomness that is independent from the adversarial choice of state. The dispersion (coefficient of the second-order term) is exactly characterized for most channels of interest when infinite shared randomness is allowed, and it is shown that precisely the same dispersion is achievable with only O (log n) bits of shared randomness. We also show that the dispersion is identical to that of the non-adversarial channel induced by the adversary simply choosing an i.i.d. state sequence according to the correct distribution. Further, we present some remarks on the connection to the compound channel, as well as on cost constraints for input and state sequences.

Original languageEnglish (US)
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1242-1246
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - Aug 9 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: Jun 25 2017Jun 30 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period6/25/176/30/17

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Dispersion of the discrete arbitrarily-varying channel with limited shared randomness'. Together they form a unique fingerprint.

Cite this