@inproceedings{1f43f95421d242faa898f7236108f220,
title = "Distance-Based Propagation for Efficient Knowledge Graph Reasoning",
abstract = "Knowledge graph completion (KGC) aims to predict unseen edges in knowledge graphs (KGs), resulting in the discovery of new facts. A new class of methods have been proposed to tackle this problem by aggregating path information. These methods have shown tremendous ability in the task of KGC. However they are plagued by efficiency issues. Though there are a few recent attempts to address this through learnable path pruning, they often sacrifice the performance to gain efficiency. In this work, we identify two intrinsic limitations of these methods that affect the efficiency and representation quality. To address the limitations, we introduce a new method, TAGNet, which is able to efficiently propagate information. This is achieved by only aggregating paths in a fixed window for each source-target pair. We demonstrate that the complexity of TAGNet is independent of the number of layers. Extensive experiments demonstrate that TAGNet can cut down on the number of propagated messages by as much as 90% while achieving competitive performance on multiple KG datasets.",
author = "Harry Shomer and Yao Ma and Juanhui Li and Bo Wu and Aggarwal, {Charu C.} and Jiliang Tang",
note = "Publisher Copyright: {\textcopyright}2023 Association for Computational Linguistics.; 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 ; Conference date: 06-12-2023 Through 10-12-2023",
year = "2023",
language = "English (US)",
series = "EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings",
publisher = "Association for Computational Linguistics (ACL)",
pages = "14692--14707",
editor = "Houda Bouamor and Juan Pino and Kalika Bali",
booktitle = "EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings",
address = "United States",
}