TY - GEN
T1 - Dual-battery enabled green proximal M2M communications in LPWA for IoT
AU - Liu, Xilong
AU - Ansari, Nirwan
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/7/27
Y1 - 2018/7/27
N2 - Internet of Things (IoT) promotes a heightened level of awareness about our world and makes our life more intelligent and convenient. In IoT, machine-to-machine (M2M) communications enables direct connectivities among machines and devices to automatically exchange information and perform actions. Low Power Wide Area (LPWA) plays a crucial role in provisioning wide area coverage and low energy consumption network for M2M communications in IoT. Moreover, green energy harvesting is essential for mobile machine type-devices (MTDs) to achieve their self-sustainability and independence. Therefore, we propose dual-battery architecture to empower MTDs with concurrent green energy harvesting and IoT functionalities. Rather than routing through an LPWA base station (BS), direct and dual-hop transmissions are proposed for proximal M2M communications. According to the residual green energy in the MTDs' batteries, we provision a relay incentive policy and relay selection schemes to facilitate direct and dual-hop M2M communications. For dual-hop M2M communications, some heuristics are proposed to maximize the overall data rate with low computational complexity. Finally, we validate the performances of the proposed architecture and schemes through extensive simulations.
AB - Internet of Things (IoT) promotes a heightened level of awareness about our world and makes our life more intelligent and convenient. In IoT, machine-to-machine (M2M) communications enables direct connectivities among machines and devices to automatically exchange information and perform actions. Low Power Wide Area (LPWA) plays a crucial role in provisioning wide area coverage and low energy consumption network for M2M communications in IoT. Moreover, green energy harvesting is essential for mobile machine type-devices (MTDs) to achieve their self-sustainability and independence. Therefore, we propose dual-battery architecture to empower MTDs with concurrent green energy harvesting and IoT functionalities. Rather than routing through an LPWA base station (BS), direct and dual-hop transmissions are proposed for proximal M2M communications. According to the residual green energy in the MTDs' batteries, we provision a relay incentive policy and relay selection schemes to facilitate direct and dual-hop M2M communications. For dual-hop M2M communications, some heuristics are proposed to maximize the overall data rate with low computational complexity. Finally, we validate the performances of the proposed architecture and schemes through extensive simulations.
UR - http://www.scopus.com/inward/record.url?scp=85051438053&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051438053&partnerID=8YFLogxK
U2 - 10.1109/ICC.2018.8422203
DO - 10.1109/ICC.2018.8422203
M3 - Conference contribution
AN - SCOPUS:85051438053
SN - 9781538631805
T3 - IEEE International Conference on Communications
BT - 2018 IEEE International Conference on Communications, ICC 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE International Conference on Communications, ICC 2018
Y2 - 20 May 2018 through 24 May 2018
ER -