Abstract
The accuracy of pointing movements performed under different head positions to remembered target locations in 3-D space was studied in healthy persons. The subjects fixated a visual target, then closed their eyes and after 1.0 sec performed the targeted movement with their right arm. The target (a point light source) was presented in random order by a programmable robot arm at one of five space locations. The accuracy of pointing movements was examined in a spherical coordinate system centered in respect with the shoulder of the responding arm. The pointing movements were most accurate under natural eye-head coordination. With the head fixed in the straight-ahead position, both the 3-D absolute error and its standard deviation increased significantly. At the same time, individual components of spatial error (directional and radial) did not change significantly. With the head turned to the rightmost or leftmost position, the pointing accuracy was disturbed within larger limits than under head-fixed condition. The main contributors to the 3-D absolute error were the changes in the azimuth error. The latter depended on the direction of the head-turn: the rightmost turn either increased leftward or decreased rightward shift, and conversely, the left turn increased rightward shift or decreased leftward shift of the target-directed movements. It is suggested that the increased inaccuracy of pointing under head-fixed condition reflected the impairment of the eye-head coordination underlying gaze orientation, and increased inaccuracy under the head-turned condition may be explained by changes in the internal representation of the head and target position in space.
Original language | English (US) |
---|---|
Pages (from-to) | 98-105 |
Number of pages | 8 |
Journal | Neurophysiology |
Volume | 26 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1994 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- Physiology