Abstract
The effects of uniaxial strain on the structural, orbital, optical, and magnetic properties of LaMnO3 are calculated using realistic expressions for elastic energies, along with a tight-binding parametrization of the band theory and electron-phonon coupling. Tensile uniaxial strain of the order of 2% (i.e., of the order of magnitude of those induced in thin films by lattice mismatch with substrates) is found to change the magnetic ground state, causing dramatic changes in the band structure and optical conductivity spectrum. Related issues, including reasons why the observed (ππ0) orbital ordering is favored over a (πππ) periodicity and why the uniform tetragonal distortion mode is softer in insulating than in doped compounds, are discussed.
Original language | English (US) |
---|---|
Article number | 115103 |
Pages (from-to) | 1151031-11510312 |
Number of pages | 10359282 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 64 |
Issue number | 11 |
State | Published - Sep 15 2001 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics