TY - JOUR
T1 - Efficient and Environmentally Friendly Synthesis of AlFe-PILC-Supported MnCe Catalysts for Benzene Combustion
AU - Zuo, Shufeng
AU - Yang, Peng
AU - Wang, Xianqin
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/8/31
Y1 - 2017/8/31
N2 - An efficient and environmentally friendly synthesis of AlFe-pillared clay (AlFe-PILC)-supported MnCe catalysts was explored. Mixed AlFe pillaring agents were prepared by a one-step method using Locron L and ferric nitrate solutions at a high temperature and high pressure. Montmorillonite was treated with the AlFe pillaring agents to synthesize AlFe-PILC. MnOx and CeO2 with different Mn/Ce atomic ratios were loaded onto the AlFe-PILC support by an impregnation method. The catalysts were characterized using X-ray diffraction, N2 adsorption, and high-resolution transmission electron microscopy-energy dispersive spectrometry and were tested for the catalytic combustion of benzene and temperature-programmed surface reaction using a microreactor. Compared to conventional methods, this method is simpler and less costly and results in a larger specific surface area, pore volume, and basal spacing, with the ability to control the structure of the catalytic materials. MnCe(6:1)/AlFe-PILC has the highest catalytic activity and can completely degrade benzene (600 ppm in air) at 250 °C. The activity of the catalyst is stable, and no obvious deactivation is observed at 230 °C after 1000 continuous hours. The catalyst is resistant to water and Cl-poisoning. The amount of CeO2 added is critical to the dispersion of MnOx on the support and the creation of optimum number of oxygen vacancy defect sites for the benzene oxidation reaction. The AlFe-PILC-supported MnCe catalyst is a promising porous material; the support structure, proper dispersion of active species, and addition of Ce are essential for achieving complete degradation of organic toxic chemicals at relatively low temperatures.
AB - An efficient and environmentally friendly synthesis of AlFe-pillared clay (AlFe-PILC)-supported MnCe catalysts was explored. Mixed AlFe pillaring agents were prepared by a one-step method using Locron L and ferric nitrate solutions at a high temperature and high pressure. Montmorillonite was treated with the AlFe pillaring agents to synthesize AlFe-PILC. MnOx and CeO2 with different Mn/Ce atomic ratios were loaded onto the AlFe-PILC support by an impregnation method. The catalysts were characterized using X-ray diffraction, N2 adsorption, and high-resolution transmission electron microscopy-energy dispersive spectrometry and were tested for the catalytic combustion of benzene and temperature-programmed surface reaction using a microreactor. Compared to conventional methods, this method is simpler and less costly and results in a larger specific surface area, pore volume, and basal spacing, with the ability to control the structure of the catalytic materials. MnCe(6:1)/AlFe-PILC has the highest catalytic activity and can completely degrade benzene (600 ppm in air) at 250 °C. The activity of the catalyst is stable, and no obvious deactivation is observed at 230 °C after 1000 continuous hours. The catalyst is resistant to water and Cl-poisoning. The amount of CeO2 added is critical to the dispersion of MnOx on the support and the creation of optimum number of oxygen vacancy defect sites for the benzene oxidation reaction. The AlFe-PILC-supported MnCe catalyst is a promising porous material; the support structure, proper dispersion of active species, and addition of Ce are essential for achieving complete degradation of organic toxic chemicals at relatively low temperatures.
UR - http://www.scopus.com/inward/record.url?scp=85044792630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044792630&partnerID=8YFLogxK
U2 - 10.1021/acsomega.7b00592
DO - 10.1021/acsomega.7b00592
M3 - Article
AN - SCOPUS:85044792630
SN - 2470-1343
VL - 2
SP - 5179
EP - 5186
JO - ACS Omega
JF - ACS Omega
IS - 8
ER -