Electrophysiological Correlates of Blast-Wave Induced Cerebellar Injury

Gokhan Ordek, Ahmet S. Asan, Esma Cetinkaya, Maciej Skotak, Venkata Kakulavarapu, Namas Chandra, Mesut Sahin

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Understanding the mechanisms underlying traumatic neural injury and the sequelae of events in the acute phase is important for deciding on the best window of therapeutic intervention. We hypothesized that evoked potentials (EP) recorded from the cerebellar cortex can detect mild levels of neural trauma and provide a qualitative assessment tool for progression of cerebellar injury in time. The cerebellar local field potentials evoked by a mechanical tap on the hand and collected with chronically implanted micro-ECoG arrays on the rat cerebellar cortex demonstrated substantial changes both in amplitude and timing as a result of blast-wave induced injury. The results revealed that the largest EP changes occurred within the first day of injury, and partial recoveries were observed from day-1 to day-3, followed by a period of gradual improvements (day-7 to day-14). The mossy fiber (MF) and climbing fiber (CF) mediated components of the EPs were affected differentially. The behavioral tests (ladder rung walking) and immunohistological analysis (calbindin and caspase-3) did not reveal any detectable changes at these blast pressures that are typically considered as mild (100–130 kPa). The results demonstrate the sensitivity of the electrophysiological method and its use as a tool to monitor the progression of cerebellar injuries in longitudinal animal studies.

Original languageEnglish (US)
Article number13633
JournalScientific reports
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Electrophysiological Correlates of Blast-Wave Induced Cerebellar Injury'. Together they form a unique fingerprint.

Cite this