Electrostatic forces on particles floating within the interface between two immiscible fluids

Nadine Aubry, Pushpendra Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

The objective of this paper is to study the dependence of the electrostatic force that act on a particle within the interface between two immiscible fluids on the parameters such as the dielectric properties of the fluids and particles, the particle's position within the interface, and the electric field strength. It is shown that the component of electrostatic force normal to the interface varies as a2, where a is the particle radius, and since in equilibrium it is balanced by the vertical capillary force, the interfacial deformation caused by the particle changes when an external electric field is applied. In addition, there are lateral electrostatic forces among the particles due to the dipole-dipole interactions which, when the distance between two particles is O(a), vary as a2, and remain significant for submicron sized particles.

Original languageEnglish (US)
Title of host publicationHeat Transfer, Fluid Flows, and Thermal Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages1969-1976
Number of pages8
ISBN (Electronic)0791843025
DOIs
StatePublished - Jan 1 2007
EventASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, United States
Duration: Nov 11 2007Nov 15 2007

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8

Other

OtherASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007
CountryUnited States
CitySeattle
Period11/11/0711/15/07

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Engineering(all)

Fingerprint Dive into the research topics of 'Electrostatic forces on particles floating within the interface between two immiscible fluids'. Together they form a unique fingerprint.

Cite this