Enabling Exploratory Large Scale Graph Analytics through Arkouda

Zhihui Du, Oliver Alvarado Rodriguez, David A. Bader

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Exploratory graph analytics helps maximize the informational value from a graph. However, increasing graph sizes makes it impossible for existing popular exploratory data analysis tools to handle dozens of terabytes or even larger data sets in the memory of a common laptop/personal computer. Arkouda is a framework under early development that brings together the productivity of Python at the user-side with the high performance of Chapel at the server-side. In this paper, we present our initial work on overcoming the memory limit and high-performance computing coding roadblocks for high-level Python users to perform large graph analyses. Based on a simple and succinct graph data structure, a high-level Chapel-based graph algorithm, Breadth-First Search (BFS), is presented to show the scalable and parallel graph algorithm development method in a productive way through Arkouda. The reverse Cuthill-McKee (RCM) algorithm is implemented in Chapel to relabel the vertices of a graph as a preprocessing step to improve the performance of BFS and one low-level BFS algorithm is also developed to compare with the performance of high-level method. Both synthetic graphs and typical graph benchmarks are used to evaluate the performance of the provided graph algorithms. The experimental results show that, based on the proposed high-level algorithm framework, the performance of BFS can be improved significantly and easily by simply selecting suitable Chapel high-level data structures and parallel constructs. Our code is open source and available from GitHub (https://github.com/Bader-Research/arkouda).

Original languageEnglish (US)
Title of host publication2021 IEEE High Performance Extreme Computing Conference, HPEC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665423694
DOIs
StatePublished - 2021
Event2021 IEEE High Performance Extreme Computing Conference, HPEC 2021 - Virtual, Online, United States
Duration: Sep 20 2021Sep 24 2021

Publication series

Name2021 IEEE High Performance Extreme Computing Conference, HPEC 2021

Conference

Conference2021 IEEE High Performance Extreme Computing Conference, HPEC 2021
Country/TerritoryUnited States
CityVirtual, Online
Period9/20/219/24/21

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Computational Mathematics

Keywords

  • Breadth-First Search
  • Exploratory graph analysis
  • High-Performance Computing
  • Parallel graph algorithms

Fingerprint

Dive into the research topics of 'Enabling Exploratory Large Scale Graph Analytics through Arkouda'. Together they form a unique fingerprint.

Cite this