End-to-End Pipeline for Trigger Detection on Hit and Track Graphs

Tingting Xuan, Yimin Zhu, Giorgian Borca-Tasciuc, Ming Xiong Liu, Yu Sun, Cameron Dean, Yasser Corrales Morales, Zhaozhong Shi, Dantong Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

There has been a surge of interest in applying deep learning in particle and nuclear physics to replace labor-intensive offline data analysis with automated online machine learning tasks. This paper details a novel AI-enabled triggering solution for physics experiments in Relativistic Heavy Ion Collider and future Electron-Ion Collider. The triggering system consists of a comprehensive end-to-end pipeline based on Graph Neural Networks that classifies trigger events versus background events, makes online decisions to retain signal data, and enables efficient data acquisition. The triggering system first starts with the coordinates of pixel hits lit up by passing particles in the detector, applies three stages of event processing (hits clustering, track reconstruction, and trigger detection), and labels all processed events with the binary tag of trigger versus background events. By switching among different objective functions, we train the Graph Neural Networks in the pipeline to solve multiple tasks: the edge-level track reconstruction problem, the edge-level track adjacency matrix prediction, and the graph-level trigger detection problem. We propose a novel method to treat the events as track-graphs instead of hit-graphs. This method focuses on intertrack relations and is driven by underlying physics processing. As a result, it attains a solid performance (around 72% accuracy) for trigger detection and outperforms the baseline method using hit-graphs by 2% higher accuracy.

Original languageEnglish (US)
Title of host publicationAAAI-23 Special Programs, IAAI-23, EAAI-23, Student Papers and Demonstrations
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages15752-15758
Number of pages7
ISBN (Electronic)9781577358800
DOIs
StatePublished - Jun 27 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'End-to-End Pipeline for Trigger Detection on Hit and Track Graphs'. Together they form a unique fingerprint.

Cite this