Abstract
Biomaterial-based scaffolds used in nerve conduits including channels for confining regenerating axons and 3-dimensional (3D) gels as substrates for growth have made improvements in models of nerve repair. Many biomaterial strategies, however, continue to fall short of autologous nerve grafts, which remain the current gold standard in repairing severe nerve lesions (20 mm). Intraluminal nerve conduit fibers have also shown considerable promise in directing regenerating axons in vitro and in vivo and have gained increasing interest for nerve repair. It is unknown, however, how growing axons respond to a fiber when encountered in a 3D environment. In this study, we considered a construct consisting of a compliant collagen hydrogel matrix and a fiber component to assess contact-guided axon growth. We investigated preferential axon outgrowth on synthetic and natural polymer fibers by utilizing small-diameter microfibers of poly-L-lactic acid and type I collagen representing 2 different fiber stiffnesses. We found that axons growing freely in a 3D hydrogel culture preferentially attach, turn and follow fibers with outgrowth rates and distances that far exceed outgrowth in a hydrogel alone. Wet-spun type I collagen from rat tail tendon performed the best, associated with highly aligned and accelerated outgrowth. This study also evaluated the response of dorsal root ganglion neurons from adult rats to provide data more relevant to axon regenerative potential in nerve repair. We found that ECM treatments on fibers enhanced the regeneration of adult axons indicating that both the physical and biochemical presentation of the fibers are essential for enhancing axon guidance and growth.
Original language | English (US) |
---|---|
Pages (from-to) | 105-117 |
Number of pages | 13 |
Journal | Cells Tissues Organs |
Volume | 210 |
Issue number | 2 |
DOIs | |
State | Published - Jul 1 2021 |
All Science Journal Classification (ASJC) codes
- Anatomy
- Histology
Keywords
- Axon outgrowth and regeneration
- Collagen fiber
- Contact guidance
- Nerve regeneration
- Tissue engineering