Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts

Sayan Roychowdhury, Samreen T. Mahmud, Aristotle Martin, Peter Balogh, Daniel F. Puleri, John Gounley, Erik W. Draeger, Amanda Randles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking an individual cancer cell. Comparison to a fully-resolved fluid-structure interaction model is presented for verification. Finally, we use the advanced APR method to simulate cancer cell transport over a mm-scale distance while maintaining a local region of RBCs, using a fraction of the computational power required to run a fully-resolved model.

Original languageEnglish (US)
Title of host publicationSC 2023 - International Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9798400701092
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2023 - Denver, United States
Duration: Nov 12 2023Nov 17 2023

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2023 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2023
Country/TerritoryUnited States
CityDenver
Period11/12/2311/17/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Software

Keywords

  • cancer cells
  • computational fluid dynamics
  • heterogeneous architecture
  • multiphysics
  • multiscale modeling
  • red blood cells

Fingerprint

Dive into the research topics of 'Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts'. Together they form a unique fingerprint.

Cite this