Enhancing domain word embedding via latent semantic imputation

Shibo Yao, Dantong Yu, Keli Xiao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

We present a novel method named Latent Semantic Imputation (LSI) to transfer external knowledge into semantic space for enhancing word embedding. The method integrates graph theory to extract the latent manifold structure of the entities in the affinity space and leverages non-negative least squares with standard simplex constraints and power iteration method to derive spectral embeddings. It provides an effective and efficient approach to combining entity representations defined in different Euclidean spaces. Specifically, our approach generates and imputes reliable embedding vectors for low-frequency words in the semantic space and benefits downstream language tasks that depend on word embedding. We conduct comprehensive experiments on a carefully designed classification problem and language modeling and demonstrate the superiority of the enhanced embedding via LSI over several well-known benchmark embeddings. We also confirm the consistency of the results under different parameter settings of our method.

Original languageEnglish (US)
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages557-565
Number of pages9
ISBN (Electronic)9781450362016
DOIs
StatePublished - Jul 25 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: Aug 4 2019Aug 8 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period8/4/198/8/19

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Graph
  • Manifold learning
  • Representation learning
  • Spectral methods

Fingerprint

Dive into the research topics of 'Enhancing domain word embedding via latent semantic imputation'. Together they form a unique fingerprint.

Cite this