Enthalpy of formation of cubic yttria-stabilized zirconia

T. A. Lee, A. Navrotsky, I. Molodetsky

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Oxide melt solution calorimetric measurements were made to determine the enthalpy of formation of cubic-yttria-stabilized zirconia (c-YSZ) with respect to the oxides m-ZrO2 and C-type YO1.5. The enthalpy of formation can be fit either by a quadratic equation or by two straight line segments about the minimum near x = 0.40. The quadratic fit gives a strongly negative interaction parameter, Ω = -93.7 ± 12.0 kJ/mol, but does not imply regular solution behavior because of extensive short-range order. In this fit, the enthalpy of transition of m-ZrO2 to c-ZrO2, 9.7 ± 1.1 kJ/mol, is in reasonable agreement with earlier estimates and that of C-type to cubic fluorite YO1.5, 24.3 ± 14.4 kJ/mol, is consistent with an essentially random distribution of oxide ions and anion vacancies in the high-temperature fluorite phase. The two straight-line segments give 6.1 ± 0.6 kJ/mol and 5.5 ± 2.5 kJ/mol for these transitions, respectively. The latter value would imply strong short-range order in cubic fluorite YO1.5. Clearly more complex solution thermodynamic descriptions need to be developed. The enthalpy of transition from the disordered c-YSZ phase to the ordered δ-phase at 25 °C was also measured and was 0.4 ± 1.6 kJ/mol. No energetic difference between the disordered-c-YSZ phase and the ordered δ-phase underscores the importance of short-range order in c-YSZ. Enthalpy data were combined with Gibbs free energy data to calculate entropies of mixing. Using the quadratic fit, negative excess entropy of mixing in the cubic solid solution, relative to a system with maximum randomness on cation and anion sublattices, was found and was another indication of extensive short-range order in c-YSZ.

Original languageEnglish (US)
Pages (from-to)908-918
Number of pages11
JournalJournal of Materials Research
Volume18
Issue number4
DOIs
StatePublished - Apr 2003
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Enthalpy of formation of cubic yttria-stabilized zirconia'. Together they form a unique fingerprint.

Cite this