TY - JOUR

T1 - Enthalpy of formation of cubic yttria-stabilized zirconia

AU - Lee, T. A.

AU - Navrotsky, A.

AU - Molodetsky, I.

N1 - Funding Information:
The authors are grateful to Dr. Katheryn Helean for help with electron microprobe measurements. This work was supported by the United States Department of Energy (Grant No. DE-FG03-97ER45654), Motorola, and the University of California Semiconductor Manufacturing Alliance for Research and Training (UC-SMART) program.

PY - 2003/4

Y1 - 2003/4

N2 - Oxide melt solution calorimetric measurements were made to determine the enthalpy of formation of cubic-yttria-stabilized zirconia (c-YSZ) with respect to the oxides m-ZrO2 and C-type YO1.5. The enthalpy of formation can be fit either by a quadratic equation or by two straight line segments about the minimum near x = 0.40. The quadratic fit gives a strongly negative interaction parameter, Ω = -93.7 ± 12.0 kJ/mol, but does not imply regular solution behavior because of extensive short-range order. In this fit, the enthalpy of transition of m-ZrO2 to c-ZrO2, 9.7 ± 1.1 kJ/mol, is in reasonable agreement with earlier estimates and that of C-type to cubic fluorite YO1.5, 24.3 ± 14.4 kJ/mol, is consistent with an essentially random distribution of oxide ions and anion vacancies in the high-temperature fluorite phase. The two straight-line segments give 6.1 ± 0.6 kJ/mol and 5.5 ± 2.5 kJ/mol for these transitions, respectively. The latter value would imply strong short-range order in cubic fluorite YO1.5. Clearly more complex solution thermodynamic descriptions need to be developed. The enthalpy of transition from the disordered c-YSZ phase to the ordered δ-phase at 25 °C was also measured and was 0.4 ± 1.6 kJ/mol. No energetic difference between the disordered-c-YSZ phase and the ordered δ-phase underscores the importance of short-range order in c-YSZ. Enthalpy data were combined with Gibbs free energy data to calculate entropies of mixing. Using the quadratic fit, negative excess entropy of mixing in the cubic solid solution, relative to a system with maximum randomness on cation and anion sublattices, was found and was another indication of extensive short-range order in c-YSZ.

AB - Oxide melt solution calorimetric measurements were made to determine the enthalpy of formation of cubic-yttria-stabilized zirconia (c-YSZ) with respect to the oxides m-ZrO2 and C-type YO1.5. The enthalpy of formation can be fit either by a quadratic equation or by two straight line segments about the minimum near x = 0.40. The quadratic fit gives a strongly negative interaction parameter, Ω = -93.7 ± 12.0 kJ/mol, but does not imply regular solution behavior because of extensive short-range order. In this fit, the enthalpy of transition of m-ZrO2 to c-ZrO2, 9.7 ± 1.1 kJ/mol, is in reasonable agreement with earlier estimates and that of C-type to cubic fluorite YO1.5, 24.3 ± 14.4 kJ/mol, is consistent with an essentially random distribution of oxide ions and anion vacancies in the high-temperature fluorite phase. The two straight-line segments give 6.1 ± 0.6 kJ/mol and 5.5 ± 2.5 kJ/mol for these transitions, respectively. The latter value would imply strong short-range order in cubic fluorite YO1.5. Clearly more complex solution thermodynamic descriptions need to be developed. The enthalpy of transition from the disordered c-YSZ phase to the ordered δ-phase at 25 °C was also measured and was 0.4 ± 1.6 kJ/mol. No energetic difference between the disordered-c-YSZ phase and the ordered δ-phase underscores the importance of short-range order in c-YSZ. Enthalpy data were combined with Gibbs free energy data to calculate entropies of mixing. Using the quadratic fit, negative excess entropy of mixing in the cubic solid solution, relative to a system with maximum randomness on cation and anion sublattices, was found and was another indication of extensive short-range order in c-YSZ.

UR - http://www.scopus.com/inward/record.url?scp=0037999911&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037999911&partnerID=8YFLogxK

U2 - 10.1557/JMR.2003.0125

DO - 10.1557/JMR.2003.0125

M3 - Article

AN - SCOPUS:0037999911

SN - 0884-2914

VL - 18

SP - 908

EP - 918

JO - Journal of Materials Research

JF - Journal of Materials Research

IS - 4

ER -