ERFSL: An Efficient Reward Function Searcher via Large Language Models for Custom-EnvironmentMulti-ObjectiveReinforcementLearning

Guanwen Xie, Jingzehua Xu, Yiyuan Yang, Yimian Ding, Shuai Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose ERFSL, an efficient reward function searcher using large language models (LLMs) for custom-environment, multi-objective reinforcement learning (RL). ERFSL generates reward components based on explicit user requirements and rectifies them, and iteratively optimizes the weights of these components based on textual context. Applied to an underwater data collection RL task, ERFSL corrects reward codes with only one feedback iteration per requirement, and acquires diverse reward functions within the Pareto set. ERFSL also presents robust capability for deviated weights and small-size LLMs such as GPT-4o mini. The full-text prompts, examples of LLM-generated answers, and source code are available at https://360zmem.github.io/LLMRsearcher/.

Original languageEnglish (US)
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages29535-29537
Number of pages3
Edition28
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - Apr 11 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number28
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period2/25/253/4/25

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'ERFSL: An Efficient Reward Function Searcher via Large Language Models for Custom-EnvironmentMulti-ObjectiveReinforcementLearning'. Together they form a unique fingerprint.

Cite this