Exploiting the adaptive neural fuzzy inference system for predicting the effect of notch depth on elastic new strain-concentration factor under combined loading

Rami Al-Jarrah, Hitham Tlilan, Abdallah Khreishah

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, a novel machine-learning based models are presented to predict the effect of notch depth on elastic new strain-concentration factor of rectangular bars with single edge U-notch under combined loading of static tension and pure bending. Regarding the importance of this study, the database with 162 samples is utilized to develop the new methodology of machine learning based models. The database includes the notch radius, the Poisson’s ratio, and the thick ratio that represent the influential inputs. The predicted key feature is the elastic new strain-concentration factor under combined loading of static tension and pure bending. These samples were tested with high precision and the predicted values of SNCF were obtained. For comparison, adaptive neural fuzzy inference system, artificial neural network, fine tree, ensemble boosted tree, and ensemble optimized bagged tree were designed and developed in this study. To evaluate and compare the performance of the models, four statistical indices of MAE, MSE, root mean square error (RMSE)and determination coefficient (R) were utilized. Based on the results, all models can predict the SNCF appropriately. However, the Ensemble optimized Bagged tree model had a better performance than other models and it had a significant priority in term of prediction accuracy. Finally, the results indicated that the elastic SNCF increased with increasing notch depth from 0.2 ≤ ho/Ho ≤ 0.7 and sharply decreases with increasing notch depth for shallow notches (0.8 ≤ ho/Ho ≤ 0.95).

Original languageEnglish (US)
Pages (from-to)3055-3073
Number of pages19
JournalCluster Computing
Volume27
Issue number3
DOIs
StatePublished - Jun 2024

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Keywords

  • Elastic new strain-concentration factor
  • Machine learning
  • Mechanical properties
  • Predictive modeling

Fingerprint

Dive into the research topics of 'Exploiting the adaptive neural fuzzy inference system for predicting the effect of notch depth on elastic new strain-concentration factor under combined loading'. Together they form a unique fingerprint.

Cite this