Abstract
Powerful branch predictors along with a large branch target buffer (BTB) are employed in superscalar and simultaneous multi-threading (SMT) processors for instruction-level parallelism and thread-level parallelism exploitation. However, the large BTB not only dominates the predictor energy consumption, but also becomes a major roadblock in achieving faster clock frequencies at deep sub-micron technologies. The authors propose here a filtering scheme to dramatically reduce the accesses to the BTB to achieve significantly reduced energy consumption in the BTB while maintaining the performance. For a simulated superscalar microprocessor, the experimental evaluation shows that the BTB access filtering (BAF) design achieves an 88.5% dynamic energy reduction with negligible performance loss. The authors also study the leakage behaviour and its control in the BAF design. The results show that by applying a drowsy strategy, very effective leakage control can be achieved. For the high-performance design, the BAF can also improve BTB's performance scalability at new technologies. For the simultaneous multi-threading environment, the authors evaluate the effectiveness of the BAF design and propose a banked BAF (BK-BAF) scheme to further reduce the energy consumption and performance overhead. The experimental results confirm that the BK-BAF scheme can be an energy/performance-effective design for next generation SMT processors.
Original language | English (US) |
---|---|
Pages (from-to) | 50-58 |
Number of pages | 9 |
Journal | IET Computers and Digital Techniques |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2012 |
All Science Journal Classification (ASJC) codes
- Software
- Hardware and Architecture
- Electrical and Electronic Engineering