Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concepts at Different Layers?

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, Yongfeng Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of “Concept Depth” to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, Qwen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.

Original languageEnglish (US)
Title of host publicationMain Conference
EditorsOwen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert
PublisherAssociation for Computational Linguistics (ACL)
Pages558-573
Number of pages16
ISBN (Electronic)9798891761964
StatePublished - 2025
Event31st International Conference on Computational Linguistics, COLING 2025 - Abu Dhabi, United Arab Emirates
Duration: Jan 19 2025Jan 24 2025

Publication series

NameProceedings - International Conference on Computational Linguistics, COLING
VolumePart F206484-1
ISSN (Print)2951-2093

Conference

Conference31st International Conference on Computational Linguistics, COLING 2025
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period1/19/251/24/25

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concepts at Different Layers?'. Together they form a unique fingerprint.

Cite this