Abstract
This study demonstrates the orientation and the "shape factor" have pronounced effects on the development of the localized pressure fields inside of the helmet. We used anatomically accurate headform to evaluate four modern combat helmets under blast loading conditions in the shock tube. The Advanced Combat Helmet (ACH) is used to capture the effect of the orientation on pressure under the helmet. The three modern combat helmets: Enhanced Combat Helmet (ECH), Ops-Core, and Airframe, were tested in frontal orientation to determine the effect of helmet geometry. Using the unhelmeted headform data as a reference, we characterized pressure distribution inside each helmet and identified pressure focal points. The nature of these localized “hot spots” is different than the elevated pressure in the parietal region of the headform under the helmet widely recognized as the under-wash effect also observed in our tests. It is the first experimental study which indicates that the helmet presence increased the pressure experienced by the eyes and the forehead (glabella). Pressure fingerprinting using an array of sensors combined with the application of principle component analysis (PCA) helped elucidate the subtle differences between helmets.
Original language | English (US) |
---|---|
Article number | 7193 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | Applied Sciences (Switzerland) |
Volume | 10 |
Issue number | 20 |
DOIs | |
State | Published - Oct 2 2020 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Instrumentation
- General Engineering
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes
Keywords
- Blast overpressure
- Helmet
- Impulse
- Peak overpressure
- Shock tube
- Shock wave