Fast and Adaptive List Intersections on the GPU

James Fox, Oded Green, Kasimir Gabert, Xiaojing An, David A. Bader

Research output: Chapter in Book/Report/Conference proceedingConference contribution

29 Scopus citations

Abstract

List intersections are ubiquitous and can be found in a wide range of applications, including triangle counting and finding the maximal k-truss, both of which are part of the HPEC Static Graph Challenge. For many graph based problems it is necessary to find intersections for a very large number of lists-these lists tend to vary greatly in size and are difficult to efficiently load-balance. Numerous parallel algorithms on list intersections for triangle counting have been proposed, but load-balancing decisions are typically made at a global level. In this paper we present an efficient and adaptive approach to load-balancing at a finer granularity. Our approach assigns a different number of threads for different intersections in order to effectively utilize the resources of the GPU. We show the applicability of our load-balancing method to two different intersection methods, one search-based and one merge-based. Our algorithm outperforms several recent triangle counting algorithms, including recent HPEC Graph Challenge Champions.

Original languageEnglish (US)
Title of host publication2018 IEEE High Performance Extreme Computing Conference, HPEC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538659892
DOIs
StatePublished - Nov 26 2018
Externally publishedYes
Event2018 IEEE High Performance Extreme Computing Conference, HPEC 2018 - Waltham, United States
Duration: Sep 25 2018Sep 27 2018

Publication series

Name2018 IEEE High Performance Extreme Computing Conference, HPEC 2018

Conference

Conference2018 IEEE High Performance Extreme Computing Conference, HPEC 2018
Country/TerritoryUnited States
CityWaltham
Period9/25/189/27/18

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Fast and Adaptive List Intersections on the GPU'. Together they form a unique fingerprint.

Cite this