Fast contraction of coronal loops at the flare peak

Rui Liu, Haimin Wang

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 to contract at ∼ 100 km s-1 at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at ∼ 6 km s-1 for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

Original languageEnglish (US)
Pages (from-to)L41-L46
JournalAstrophysical Journal Letters
Volume714
Issue number1 PART 2
DOIs
StatePublished - Jan 1 2010

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Sun: X-rays, gamma rays
  • Sun: corona
  • Sun: flares
  • Sun: oscillations

Fingerprint Dive into the research topics of 'Fast contraction of coronal loops at the flare peak'. Together they form a unique fingerprint.

Cite this