Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs (Extended Abstract)

David A. Bader, Guojing Cong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

37 Scopus citations

Abstract

Minimum Spanning Tree (MST) is one of the most studied combinatorial problems with practical applications in VLSI layout, wireless communication, and distributed networks, recent problems in biology and medicine such as cancer detection, medical imaging, and proteomics, and national security and bioterrorism such as detecting the spread of toxins through populations in the case of biological/chemical warfare. Most of the previous attempts for improving the speed of MST using parallel computing are too complicated to implement or perform well only on special graphs with regular structure. In this paper we design and implement four parallel MST algorithms (three variations of Borůvka plus our new approach) for arbitrary sparse graphs that for the first time give speedup when compared with the best sequential algorithm. In fact, our algorithms also solve the minimum spanning forest problem. We provide an experimental study of our algorithms on symmetric multiprocessors such as IBM's p690/Regatta and Sun's Enterprise servers. Our new implementation achieves good speedups ever a wide range of input graphs with regular and irregular structures, including the graphs used by previous parallel MST studies. For example, on an arbitrary random graph with 1M vertices and 20M edges, our new approach achieves a speedup of 5 using 8 processors. The source code for these algorithms is freely-available from our web site hpc.ece.unm.edu.

Original languageEnglish (US)
Title of host publicationProceedings - 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
Pages521-530
Number of pages10
StatePublished - 2004
Externally publishedYes
EventProceedings - 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM) - Santa Fe, NM, United States
Duration: Apr 26 2004Apr 30 2004

Publication series

NameProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
Volume18

Other

OtherProceedings - 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
Country/TerritoryUnited States
CitySanta Fe, NM
Period4/26/044/30/04

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs (Extended Abstract)'. Together they form a unique fingerprint.

Cite this