TY - JOUR
T1 - Fe-Mediated Nitrogen Fixation with a Metallocene Mediator
T2 - Exploring p Ka Effects and Demonstrating Electrocatalysis
AU - Chalkley, Matthew J.
AU - Del Castillo, Trevor J.
AU - Matson, Benjamin D.
AU - Peters, Jonas C.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/5/16
Y1 - 2018/5/16
N2 - Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid pKa. We find that there is a strong correlation between pKa and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp∗2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed pKa effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp∗2Co protonation by the different anilinium acids. Inclusion of Cp∗2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).
AB - Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid pKa. We find that there is a strong correlation between pKa and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp∗2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed pKa effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp∗2Co protonation by the different anilinium acids. Inclusion of Cp∗2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).
UR - http://www.scopus.com/inward/record.url?scp=85046413014&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046413014&partnerID=8YFLogxK
U2 - 10.1021/jacs.8b02335
DO - 10.1021/jacs.8b02335
M3 - Article
C2 - 29669205
AN - SCOPUS:85046413014
SN - 0002-7863
VL - 140
SP - 6122
EP - 6129
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 19
ER -