Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p Ka Effects and Demonstrating Electrocatalysis

Matthew J. Chalkley, Trevor J. Del Castillo, Benjamin D. Matson, Jonas C. Peters

Research output: Contribution to journalArticlepeer-review

122 Scopus citations


Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid pKa. We find that there is a strong correlation between pKa and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp∗2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed pKa effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp∗2Co protonation by the different anilinium acids. Inclusion of Cp∗2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).

Original languageEnglish (US)
Pages (from-to)6122-6129
Number of pages8
JournalJournal of the American Chemical Society
Issue number19
StatePublished - May 16 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p Ka Effects and Demonstrating Electrocatalysis'. Together they form a unique fingerprint.

Cite this