Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective

Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, Jiliang Tang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Recent years have witnessed remarkable success achieved by graph neural networks (GNNs) in many real-world applications such as recommendation and drug discovery. Despite the success, oversmoothing has been identified as one of the key issues which limit the performance of deep GNNs. It indicates that the learned node representations are highly indistinguishable due to the stacked aggregators. In this paper, we propose a new perspective to look at the performance degradation of deep GNNs, i.e., feature overcorrelation. Through empirical and theoretical study on this matter, we demonstrate the existence of feature overcorrelation in deeper GNNs and reveal potential reasons leading to this issue. To reduce the feature correlation, we propose a general framework DeCorr which can encourage GNNs to encode less redundant information. Extensive experiments have demonstrated that DeCorr can help enable deeper GNNs and is complementary to existing techniques tackling the oversmoothing issue.

Original languageEnglish (US)
Title of host publicationKDD 2022 - Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages709-719
Number of pages11
ISBN (Electronic)9781450393850
DOIs
StatePublished - Aug 14 2022
Event28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 - Washington, United States
Duration: Aug 14 2022Aug 18 2022

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
Country/TerritoryUnited States
CityWashington
Period8/14/228/18/22

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • deep models
  • graph neural networks
  • semi-supervised learning

Fingerprint

Dive into the research topics of 'Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective'. Together they form a unique fingerprint.

Cite this