Abstract
Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe2O3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm−2), a maximal photocurrent of 1.0 mA cm−2 is achieved with ZnO/Fe2O3 core–shell NWs and 2.3 mA cm−2 was achieved for the PH3-treated NWs at 1.23 V versus RHE. The PH3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe2PO5), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material.
Original language | English (US) |
---|---|
Pages (from-to) | 2796-2804 |
Number of pages | 9 |
Journal | ChemSusChem |
Volume | 10 |
Issue number | 13 |
DOIs | |
State | Published - Jul 10 2017 |
All Science Journal Classification (ASJC) codes
- Environmental Chemistry
- General Chemical Engineering
- General Materials Science
- General Energy
Keywords
- charge separation
- heterojunction
- overlayer
- photoelectrochemistry
- surface state